Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38692647

RESUMO

Nonclinical safety and pharmacokinetic data for MMAE and 14 vedotin ADCs were evaluated to determine patterns of toxicity, consistency of pharmacokinetic results, and species differences between rats and monkeys. Most nonclinical toxicities were antigen-independent, common across ADCs, and included hematologic, lymphoid, and reproductive toxicity related to MMAE pharmacology. Hematologic toxicity was the dose-limiting or predominant toxicity for the majority of vedotin ADCs in both species. Tissue expression of the targeted antigen of an ADC rarely correlated with dose-limiting toxicity (DLT); only two ADCs had antigen-dependent skin DLTs. For two additional ADCs, antigen-dependent delivery of MMAE in the bone marrow may have exacerbated the antigen-independent hematologic DLT. The highest tolerated doses and pharmacokinetics were similar within a given species, with rats tolerating higher doses than monkeys. Studies longer than one month in duration detected the same or fewer toxicities than one-month studies and had no additional findings that affected the human risk assessment. These data support opportunities to streamline ADC toxicity assessments without compromising human starting dose selection or target organ identification.

2.
Nat Commun ; 15(1): 466, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212321

RESUMO

Approved antibody-drug conjugates (ADCs) for HER2-positive breast cancer include trastuzumab emtansine and trastuzumab deruxtecan. To develop a differentiated HER2 ADC, we chose an antibody that does not compete with trastuzumab or pertuzumab for binding, conjugated to a reduced potency PBD (pyrrolobenzodiazepine) dimer payload. PBDs are potent cytotoxic agents that alkylate and cross-link DNA. In our study, the PBD dimer is modified to alkylate, but not cross-link DNA. This HER2 ADC, DHES0815A, demonstrates in vivo efficacy in models of HER2-positive and HER2-low cancers and is well-tolerated in cynomolgus monkey safety studies. Mechanisms of action include induction of DNA damage and apoptosis, activity in non-dividing cells, and bystander activity. A dose-escalation study (ClinicalTrials.gov: NCT03451162) in patients with HER2-positive metastatic breast cancer, with the primary objective of evaluating the safety and tolerability of DHES0815A and secondary objectives of characterizing the pharmacokinetics, objective response rate, duration of response, and formation of anti-DHES0815A antibodies, is reported herein. Despite early signs of anti-tumor activity, patients at higher doses develop persistent, non-resolvable dermal, ocular, and pulmonary toxicities, which led to early termination of the phase 1 trial.


Assuntos
Anticorpos Monoclonais Humanizados , Antineoplásicos , Benzodiazepinas , Neoplasias da Mama , Imunoconjugados , Humanos , Animais , Feminino , Neoplasias da Mama/genética , Macaca fascicularis/genética , Receptor ErbB-2/metabolismo , Trastuzumab/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , DNA
3.
AAPS J ; 24(6): 100, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127472

RESUMO

RO7297089, an anti-B-cell maturation antigen (BCMA)/CD16A bispecific tetravalent antibody, is being developed as a multiple myeloma (MM) therapeutic. This study characterized nonclinical pharmacokinetics (PK), pharmacodynamics (PD), soluble BCMA (sBCMA), and soluble CD16 (sCD16) changes following administration of RO7297089 to support clinical trials. Unbound and total RO7297089 concentrations were measured in cynomolgus monkeys. RO7297089 exhibited a bi-phasic systemic concentration-time profile, similar to a typical human immunoglobulin 1 antibody. Target engagement by RO7297089 led to a robust increase (~100-fold) in total systemic sBCMA levels and relatively mild increase (~2-fold) in total sCD16 levels. To describe the relationship of nonclinical PK/PD data, we developed a target-mediated drug disposition (TMDD) model that includes the systemic target engagement of membrane BCMA (mBCMA), sBCMA, membrane CD16 (mCD16), and sCD16. We then used this model to simulate the PK/PD relationship of RO7297089 in MM patients by translating relevant PK parameters and target levels, based on the literature and newly generated data such as baseline sCD16A levels. Our model suggested that the impact of TMDD on RO7297089 exposure may be more significant in MM patients due to significantly higher expression levels of both mBCMA and sBCMA compared to healthy cynomolgus monkeys. Based on model simulations, we propose more frequent dosing of RO7297089 compared to regular monthly frequency in the clinic at the beginning of treatment to ensure sustained target engagement. This study demonstrates a translational research strategy for collecting relevant nonclinical data, establishing a TMDD model, and using simulations from this model to inform clinical dose regimens.


Assuntos
Mieloma Múltiplo , Animais , Humanos , Imunoterapia , Macaca fascicularis , Mieloma Múltiplo/tratamento farmacológico
4.
Int J Toxicol ; 41(3): 171-181, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35435047

RESUMO

ICH S6 (R1) states that safety evaluation of biotherapeutics should normally include 2 relevant species when available (i.e., a rodent and non-rodent species in which the test material is pharmacologically active), at least for short-term toxicology studies (generally supporting Phase I trials). For subsequent long-term toxicology studies (e.g., chronic studies up to 6 months dosing duration), there are options to reduce to only one species when justified, including when the mechanism of action of the biologic is well-understood or the toxicity findings in the short-term studies are "similar" in both the rodent and non-rodent species. Across the industry, around 25 to 33% of biologics assess multiple species within short-term toxicity studies but it is often unclear how different companies and regulators are applying the ICH S6 (R1) principles of "similar toxicity profiles" to progress with either 1 or 2 species in the long-term studies, in particular whether the absence of toxicities is considered within this definition. Sponsors may potentially continue to use 2 species to avoid regulatory risk and potential delays in development timelines, representing missed opportunities for reducing animal use, particularly of non-human primates, during drug development.This article summarizes presentations from a symposium at the 41st Annual meeting of the American College of Toxicology (ACT) in November 2020, in which industry case studies and regulatory perspectives addressed considerations and decisions for using 1 or 2 species for long-term toxicity studies, highlighting any common themes or experience that could be applicable for use in future decision-making.


Assuntos
Desenvolvimento de Medicamentos , Animais , Humanos , Estados Unidos
5.
Leukemia ; 36(4): 1006-1014, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35001074

RESUMO

Despite the recent progress, multiple myeloma (MM) is still essentially incurable and there is a need for additional effective treatments with good tolerability. RO7297089 is a novel bispecific BCMA/CD16A-directed innate cell engager (ICE®) designed to induce BCMA+ MM cell lysis through high affinity binding of CD16A and retargeting of NK cell cytotoxicity and macrophage phagocytosis. Unlike conventional antibodies approved in MM, RO7297089 selectively targets CD16A with no binding of other Fcγ receptors, including CD16B on neutrophils, and irrespective of 158V/F polymorphism, and its activity is less affected by competing IgG suggesting activity in the presence of M-protein. Structural analysis revealed this is due to selective interaction with a single residue (Y140) uniquely present in CD16A opposite the Fc binding site. RO7297089 induced tumor cell killing more potently than conventional antibodies (wild-type and Fc-enhanced) and induced lysis of BCMA+ cells at very low effector-to-target ratios. Preclinical toxicology data suggested a favorable safety profile as in vitro cytokine release was minimal and no RO7297089-related mortalities or adverse events were observed in cynomolgus monkeys. These data suggest good tolerability and the potential of RO7297089 to be a novel effective treatment of MM patients.


Assuntos
Anticorpos Biespecíficos , Mieloma Múltiplo , Antígeno de Maturação de Linfócitos B , Humanos , Mieloma Múltiplo/tratamento farmacológico , Fagocitose , Receptores de IgG
6.
Mol Cancer Ther ; 20(6): 1112-1120, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33722856

RESUMO

Calicheamicin antibody-drug conjugates (ADCs) are effective therapeutics for leukemias with two recently approved in the United States: Mylotarg (gemtuzumab ozogamicin) targeting CD33 for acute myeloid leukemia and Besponsa (inotuzumab ozogamicin) targeting CD22 for acute lymphocytic leukemia. Both of these calicheamicin ADCs are heterogeneous, aggregation-prone, and have a shortened half-life due to the instability of the acid-sensitive hydrazone linker in circulation. We hypothesized that we could improve upon the heterogeneity, aggregation, and circulation stability of calicheamicin ADCs by directly attaching the thiol of a reduced calicheamicin to an engineered cysteine on the antibody via a disulfide bond to generate a linkerless and traceless conjugate. We report herein that the resulting homogeneous conjugates possess minimal aggregation and display high in vivo stability with 50% of the drug remaining conjugated to the antibody after 21 days. Furthermore, these calicheamicin ADCs are highly efficacious in mouse models of both solid tumor (HER2+ breast cancer) and hematologic malignancies (CD22+ non-Hodgkin lymphoma). Safety studies in rats with this novel calicheamicin ADC revealed an increased tolerability compared with that reported for Mylotarg. Overall, we demonstrate that applying novel linker chemistry with site-specific conjugation affords an improved, next-generation calicheamicin ADC.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Calicheamicinas/uso terapêutico , Imunoconjugados/uso terapêutico , Animais , Antibióticos Antineoplásicos/farmacologia , Calicheamicinas/farmacologia , Modelos Animais de Doenças , Humanos , Imunoconjugados/farmacologia , Camundongos
8.
Mol Cancer Ther ; 20(2): 340-346, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33273056

RESUMO

We are interested in developing a second generation of antibody-drug conjugates (ADCs) for the treatment of non-Hodgkin lymphoma (NHL) that could provide a longer duration of response and be more effective in indolent NHL than the microtubule-inhibiting ADCs pinatuzumab vedotin [anti-CD22-vc-monomethyl auristatin E (MMAE)] and polatuzumab vedotin (anti-CD79b-vc-MMAE). Pinatuzumab vedotin (anti-CD22-vc-MMAE) and polatuzumab vedotin (anti-CD79b-vc-MMAE) are ADCs that contain the microtubule inhibitor MMAE. Clinical trial data suggest that these ADCs have promising efficacy for the treatment of NHL; however, some patients do not respond or become resistant to the ADCs. We tested an anti-CD22 ADC with a seco-CBI-dimer payload, thio-Hu anti-CD22-(LC:K149C)-SN36248, and compared it with pinatuzumab vedotin for its efficacy and duration of response in xenograft models and its ability to deplete normal B cells in cynomolgus monkeys. We found that anti-CD22-(LC:K149C)-SN36248 was effective in xenograft models resistant to pinatuzumab vedotin, gave a longer duration of response, had a different mechanism of resistance, and was able to deplete normal B cells better than pinatuzumab vedotin. These studies provide evidence that anti-CD22-(LC:K149C)-SN36248 has the potential for longer duration of response and more efficacy in indolent NHL than MMAE ADCs and may provide the opportunity to improve outcomes for patients with NHL.


Assuntos
Aminobenzoatos/uso terapêutico , Imunoconjugados/uso terapêutico , Linfoma não Hodgkin/tratamento farmacológico , Oligopeptídeos/uso terapêutico , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Aminobenzoatos/farmacologia , Animais , Linhagem Celular Tumoral , Haplorrinos , Humanos , Imunoconjugados/farmacologia , Oligopeptídeos/farmacologia
9.
Toxicol Sci ; 175(1): 24-34, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32077954

RESUMO

Transforming growth factor ß (TGFß) signaling has been recently shown to reduce antitumor response to PD-L1 blockade, leading to a renewed enthusiasm in developing anti-TGFß therapies for potential combination with cancer immunotherapy agents. Inhibition of TGFß signaling in nonclinical toxicology species is associated with serious adverse toxicities including cardiac valvulopathies and anemia. Previously, cardiovascular toxicities have been thought to be limited to small molecule inhibitors of TGFß receptor and not considered to be a liability associated with pan-TGFß neutralizing monoclonal antibodies (mAbs). Here, we report the toxicity findings associated with a potent pan-TGFß neutralizing mAb (pan-TGFß mAb; neutralizes TGFß1, 2, and 3) after 5 weekly intravenous doses of 10, 30, and 100 mg/kg, followed by a 4-week recovery period, in mice and cynomolgus monkeys. Mortality was observed due to acute bleeding and cardiovascular toxicity in mice at ≥ 30 mg/kg and prolonged menstruation in female monkeys at 100 mg/kg. Additional findings considered to be on-target exaggerated pharmacology included generalized bleeding and cardiovascular toxicity in mice and monkeys; histopathologic changes in the teeth, tongue, and skin in mice; and abnormal wound healing and microscopic pathology in the bone in monkeys. Importantly, our data indicate that the cardiovascular toxicities associated with the inhibition of TGFß signaling are not limited to small molecule inhibitors but are also observed following administration of a potent pan-TGFß inhibiting mAb.


Assuntos
Anticorpos Monoclonais Humanizados/toxicidade , Anticorpos Neutralizantes/toxicidade , Doenças Cardiovasculares/induzido quimicamente , Coração/efeitos dos fármacos , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Anticorpos Monoclonais Humanizados/sangue , Anticorpos Neutralizantes/sangue , Cardiotoxicidade , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Linhagem Celular , Feminino , Hemorragia/induzido quimicamente , Hemorragia/metabolismo , Humanos , Macaca fascicularis , Masculino , Camundongos , Miocárdio/metabolismo , Miocárdio/patologia , Medição de Risco , Fatores de Tempo , Testes de Toxicidade , Toxicocinética , Fator de Crescimento Transformador beta/imunologia , Fator de Crescimento Transformador beta/metabolismo
10.
Toxicol Pathol ; 48(2): 350-361, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31594487

RESUMO

As ovarian toxicity is often a safety concern for cancer therapeutics, identification of ovarian pathology is important in early stages of preclinical drug development, particularly when the intended patient population include women of child-bearing potential. Microscopic evaluation by pathologists of hematoxylin and eosin (H&E)-stained tissues is the current gold standard for the assessment of organs in toxicity studies. However, digital pathology and advanced image analysis are being explored with greater frequency and broader applicability to tissue evaluations in toxicologic pathology. Our objective in this work was to develop an automated method that rapidly enumerates rat ovarian corpora lutea on standard H&E-stained slides with comparable accuracy to the gold standard assessment by a pathologist. Herein, we describe an algorithm generated by a deep learning network and tested on 5 rat toxicity studies, which included studies that both had and had not previously been diagnosed with effects on number of ovarian corpora lutea. Our algorithm could not only enumerate corpora lutea accurately in all studies but also revealed distinct trends for studies with and without reproductive toxicity. Our method could be a widely applied tool to aid analysis in general toxicity studies.


Assuntos
Corpo Lúteo/efeitos dos fármacos , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Animais , Feminino , Ratos , Ratos Sprague-Dawley , Estudos Retrospectivos
12.
Front Cell Dev Biol ; 7: 156, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31475147

RESUMO

The Hippo pathway is a critical regulator of cell and organ growth and has emerged as a target for therapeutic intervention in cancers. Its signaling is thought to play an important role in various physiological processes including homeostasis and tissue regeneration. To date there has been limited information about potential pharmacology-related (on-target) safety liabilities of Hippo pathway inhibitors in the context of cancer indications. Herein, we review data from human genetic disorders and genetically engineered rodent models to gain insight into safety liabilities that may emerge from the inhibition of Hippo pathway. Germline systemic deletion of murine Hippo pathway effectors (Yap, Taz, and Teads) resulted in embryonic lethality or developmental phenotypes. Mouse models with tissue-specific deletion (or mutant overexpression) of the key effectors in Hippo pathways have indicated that, at least in some tissues, Hippo signaling may be dispensable for physiological homeostasis; and appears to be critical for regeneration upon tissue damage, indicating that patients with underlying comorbidities and/or insults caused by therapeutic agents and/or comedications may have a higher risk. Caution should be taken in interpreting phenotypes from tissue-specific transgenic animal models since some tissue-specific promoters are turned on during development. In addition, therapeutic agents may result in systemic effects not well-predicted by animal models with tissue-specific gene deletion. Therefore, the development of models that allows for systemic deletion of Yap and/or Taz in adult animals will be key in evaluating the potential safety liabilities of Hippo pathway modulation. In this review, we focus on potential challenges and strategies for targeting the Hippo pathway in cancers.

13.
Clin Cancer Res ; 25(4): 1358-1368, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29959143

RESUMO

PURPOSE: The treatment of acute myeloid leukemia (AML) has not significantly changed in 40 years. Cytarabine- and anthracycline-based chemotherapy induction regimens (7 + 3) remain the standard of care, and most patients have poor long-term survival. The reapproval of Mylotarg, an anti-CD33-calicheamicin antibody-drug conjugate (ADC), has demonstrated ADCs as a clinically validated option to enhance the effectiveness of induction therapy. We are interested in developing a next-generation ADC for AML to improve upon the initial success of Mylotarg. EXPERIMENTAL DESIGN: The expression pattern of CLL-1 and its hematopoietic potential were investigated. A novel anti-CLL-1-ADC, with a highly potent pyrrolobenzodiazepine (PBD) dimer conjugated through a self-immolative disulfide linker, was developed. The efficacy and safety profiles of this ADC were evaluated in mouse xenograft models and in cynomolgus monkeys. RESULTS: We demonstrate that CLL-1 shares similar prevalence and trafficking properties that make CD33 an excellent ADC target for AML, but lacks expression on hematopoietic stem cells that hampers current CD33-targeted ADCs. Our anti-CLL-1-ADC is highly effective at depleting tumor cells in AML xenograft models and lacks target independent toxicities at doses that depleted target monocytes and neutrophils in cynomolgus monkeys. CONCLUSIONS: Collectively, our data suggest that an anti-CLL-1-ADC has the potential to become an effective and safer treatment for AML in humans, by reducing and allowing for faster recovery from initial cytopenias than the current generation of ADCs for AML.


Assuntos
Anticorpos Anti-Idiotípicos/farmacologia , Imunoconjugados/farmacologia , Lectinas Tipo C/imunologia , Leucemia Mieloide Aguda/tratamento farmacológico , Receptores Mitogênicos/imunologia , Animais , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lectinas Tipo C/antagonistas & inibidores , Lectinas Tipo C/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Camundongos , Receptores Mitogênicos/antagonistas & inibidores , Receptores Mitogênicos/genética , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
MAbs ; 10(8): 1312-1321, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30183491

RESUMO

Few treatment options are available for acute myeloid leukemia (AML) patients. DCLL9718A is an antibody-drug conjugate that targets C-type lectin-like molecule-1 (CLL-1). This receptor is prevalent on monocytes, neutrophils, and AML blast cells, and unlike CD33, is not expressed on hematopoietic stem cells, thus providing possible hematopoietic recovery. DCLL9718A comprises an anti-CLL-1 IgG1 antibody (MCLL0517A) linked to a pyrrolobenzodiazepine (PBD) dimer payload, via a cleavable disulfide-labile linker. Here, we characterize the in vitro and in vivo stability, the pharmacokinetics (PK) and pharmacodynamics (PD) of DCLL9718A and MCLL0517A in rodents and cynomolgus monkeys. Three key PK analytes were measured in these studies: total antibody, antibody-conjugated PBD dimer and unconjugated PBD dimer. In vitro, DCLL9718A, was stable with most (> 80%) of the PBD dimer payload remaining conjugated to the antibody over 96 hours. This was recapitulated in vivo with antibody-conjugated PBD dimer clearance estimates similar to DCLL9718A total antibody clearance. Both DCLL9718A and MCLL0517A showed linear PK in the non-binding rodent species, and non-linear PK in cynomolgus monkeys, a binding species. The PK data indicated minimal impact of conjugation on the disposition of DCLL9718A total antibody. Finally, in cynomolgus monkey, MCLL0517A showed target engagement at all doses tested (0.5 and 20 mg/kg) as measured by receptor occupancy, and DCLL9718A (at doses of 0.05, 0.1 and 0.2 mg/kg) showed strong PD activity as evidenced by notable reduction in monocytes and neutrophils.


Assuntos
Imunoconjugados/farmacocinética , Imunoconjugados/uso terapêutico , Leucemia Mieloide/tratamento farmacológico , Leucemia Mieloide/metabolismo , Doença Aguda , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Área Sob a Curva , Benzodiazepinas/imunologia , Benzodiazepinas/uso terapêutico , Humanos , Imunoconjugados/imunologia , Imunoglobulina G/imunologia , Imunoglobulina G/uso terapêutico , Lectinas Tipo C/imunologia , Leucemia Mieloide/sangue , Macaca fascicularis , Taxa de Depuração Metabólica , Camundongos , Pirróis/imunologia , Pirróis/uso terapêutico , Ratos , Receptores Mitogênicos/imunologia , Especificidade da Espécie
15.
MAbs ; 10(5): 738-750, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29757698

RESUMO

For antibody-drug conjugates (ADCs) that carry a cytotoxic drug, doses that can be administered in preclinical studies are typically limited by tolerability, leading to a narrow dose range that can be tested. For molecules with non-linear pharmacokinetics (PK), this limited dose range may be insufficient to fully characterize the PK of the ADC and limits translation to humans. Mathematical PK models are frequently used for molecule selection during preclinical drug development and for translational predictions to guide clinical study design. Here, we present a practical approach that uses limited PK and receptor occupancy (RO) data of the corresponding unconjugated antibody to predict ADC PK when conjugation does not alter the non-specific clearance or the antibody-target interaction. We used a 2-compartment model incorporating non-specific and specific (target mediated) clearances, where the latter is a function of RO, to describe the PK of anti-CD33 ADC with dose-limiting neutropenia in cynomolgus monkeys. We tested our model by comparing PK predictions based on the unconjugated antibody to observed ADC PK data that was not utilized for model development. Prospective prediction of human PK was performed by incorporating in vitro binding affinity differences between species for varying levels of CD33 target expression. Additionally, this approach was used to predict human PK of other previously tested anti-CD33 molecules with published clinical data. The findings showed that, for a cytotoxic ADC with non-linear PK and limited preclinical PK data, incorporating RO in the PK model and using data from the corresponding unconjugated antibody at higher doses allowed the identification of parameters to characterize monkey PK and enabled human PK predictions.


Assuntos
Algoritmos , Anticorpos Monoclonais/farmacocinética , Imunoconjugados/farmacocinética , Modelos Biológicos , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Animais , Anticorpos Monoclonais/imunologia , Linhagem Celular Tumoral , Células HEK293 , Humanos , Imunoconjugados/imunologia , Macaca fascicularis , Estudos Prospectivos , Especificidade da Espécie
16.
MAbs ; 10(1): 1-17, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28991509

RESUMO

Monoclonal antibodies (mAbs) are improving the quality of life for patients suffering from serious diseases due to their high specificity for their target and low potential for off-target toxicity. The toxicity of mAbs is primarily driven by their pharmacological activity, and therefore safety testing of these drugs prior to clinical testing is performed in species in which the mAb binds and engages the target to a similar extent to that anticipated in humans. For highly human-specific mAbs, this testing often requires the use of non-human primates (NHPs) as relevant species. It has been argued that the value of these NHP studies is limited because most of the adverse events can be predicted from the knowledge of the target, data from transgenic rodents or target-deficient humans, and other sources. However, many of the mAbs currently in development target novel pathways and may comprise novel scaffolds with multi-functional domains; hence, the pharmacological effects and potential safety risks are less predictable. Here, we present a total of 18 case studies, including some of these novel mAbs, with the aim of interrogating the value of NHP safety studies in human risk assessment. These studies have identified mAb candidate molecules and pharmacological pathways with severe safety risks, leading to candidate or target program termination, as well as highlighting that some pathways with theoretical safety concerns are amenable to safe modulation by mAbs. NHP studies have also informed the rational design of safer drug candidates suitable for human testing and informed human clinical trial design (route, dose and regimen, patient inclusion and exclusion criteria and safety monitoring), further protecting the safety of clinical trial participants.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Avaliação Pré-Clínica de Medicamentos/métodos , Primatas , Animais , Anticorpos Monoclonais/efeitos adversos , Qualidade de Produtos para o Consumidor , Humanos , Modelos Animais , Medição de Risco , Fatores de Risco , Especificidade da Espécie
17.
Mol Cancer Ther ; 17(3): 638-649, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29282299

RESUMO

Luminal A (hormone receptor-positive) breast cancer constitutes 70% of total breast cancer patients. In an attempt to develop a targeted therapeutic for this cancer indication, we have identified and characterized Glial cell line-Derived Neurotrophic Factor (GDNF) Family Receptor Alpha 1 (GFRA1) antibody-drug conjugates (ADC) using a cleavable valine-citrulline-MMAE (vcMMAE) linker-payload. RNAseq and IHC analysis confirmed the abundant expression of GFRA1 in luminal A breast cancer tissues, whereas minimal or no expression was observed in most normal tissues. Anti-GFRA-vcMMAE ADC internalized to the lysosomes and exhibited target-dependent killing of GFRA1-expressing cells both in vitro and in vivo The ADCs using humanized anti-GFRA1 antibodies displayed robust therapeutic activity in clinically relevant cell line-derived (MCF7 and KPL-1) tumor xenograft models. The lead anti-GFRA1 ADC cross-reacts with rodent and cynomolgus monkey GFRA1 antigen and showed optimal pharmacokinetic properties in both species. These properties subsequently enabled a target-dependent toxicity study in rats. Anti-GFRA1 ADC is well tolerated in rats, as seen with other vcMMAE linker-payload based ADCs. Overall, these data suggest that anti-GFRA1-vcMMAE ADC may provide a targeted therapeutic opportunity for luminal A breast cancer patients. Mol Cancer Ther; 17(3); 638-49. ©2017 AACR.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/antagonistas & inibidores , Imunoconjugados/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Anticorpos/química , Anticorpos/imunologia , Anticorpos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/imunologia , Células HEK293 , Humanos , Imunoconjugados/imunologia , Imunoconjugados/farmacocinética , Células MCF-7 , Macaca fascicularis , Camundongos Nus , Camundongos SCID , Ratos Sprague-Dawley , Receptores de Esteroides/metabolismo , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética
18.
Regul Toxicol Pharmacol ; 92: 382-389, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29278695

RESUMO

Vismodegib (also known as GDC-0449) is a novel small molecule inhibitor of the Hedgehog (Hh) signaling pathway currently approved for the treatment of metastatic or locally advanced basal cell carcinoma (BCC) in humans. Its tumorigenic potential was assessed in dedicated carcinogenicity studies in rasH2 transgenic (Tg.rasH2) mice and Sprague Dawley (SD) rats. Tumorigenicity potential of vismodegib was identified in rats only and was limited to benign hair follicle tumors, including pilomatricomas and keratoacanthomas at exposures of ≥0.1-fold and ≥0.6-fold, respectively, of the steady-state exposure (AUC0-24h) of the recommended human dose. No malignant tumors were identified in either species. Overall, the totality of pharmacology and nonclinical safety data (lack of genotoxicity, in vitro secondary pharmacological binding, and immunoregulatory effects, and limited effects on the endocrine system) suggests that the development of the benign hair follicle tumors may be related to pharmacologically-mediated disruption of hair follicle morphogenesis, although the exact mechanism of tumorigenesis is unclear. Hair follicle tumors have not been reported in vismodegib-treated patients. The relevance of this finding in rats to patients is uncertain.


Assuntos
Anilidas/farmacologia , Carcinogênese/efeitos dos fármacos , Proteínas Hedgehog/metabolismo , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Carcinogênese/metabolismo , Feminino , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/metabolismo , Humanos , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo
19.
Mol Cancer Ther ; 16(5): 871-878, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28223423

RESUMO

A novel disulfide linker was designed to enable a direct connection between cytotoxic pyrrolobenzodiazepine (PBD) drugs and the cysteine on a targeting antibody for use in antibody-drug conjugates (ADCs). ADCs composed of a cysteine-engineered antibody were armed with a PBD using a self-immolative disulfide linker. Both the chemical linker and the antibody site were optimized for this new bioconjugation strategy to provide a highly stable and efficacious ADC. This novel disulfide ADC was compared with a conjugate containing the same PBD drug, but attached to the antibody via a peptide linker. Both ADCs had similar efficacy in mice bearing human tumor xenografts. Safety studies in rats revealed that the disulfide-linked ADC had a higher MTD than the peptide-linked ADC. Overall, these data suggest that the novel self-immolative disulfide linker represents a valuable way to construct ADCs with equivalent efficacy and improved safety. Mol Cancer Ther; 16(5); 871-8. ©2017 AACR.


Assuntos
Anticorpos/administração & dosagem , Benzodiazepinas/administração & dosagem , Imunoconjugados/administração & dosagem , Neoplasias/tratamento farmacológico , Pirróis/administração & dosagem , Animais , Anticorpos/química , Anticorpos/imunologia , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/imunologia , Benzodiazepinas/química , Benzodiazepinas/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dissulfetos/química , Dissulfetos/imunologia , Humanos , Imunoconjugados/química , Camundongos , Neoplasias/imunologia , Neoplasias/patologia , Pirróis/química , Pirróis/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Regul Toxicol Pharmacol ; 82: 1-13, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27773754

RESUMO

Antibody drug conjugates (ADC) consist of potent cytotoxic drugs conjugated to antibodies via chemical linkers, which enables specific targeting of tumor cells while reducing systemic exposure to the cytotoxic drug and improving the therapeutic window. The valine citrulline monomethyl auristatin E (vcMMAE, conventional linker-drug) ADC platform has shown promising clinical activity in several cancers, but peripheral neuropathy (PN) is a frequent adverse event leading to treatment discontinuation and dose reduction. This was not predicted based on nonclinical toxicology studies in monkeys or rats treated with vcMMAE ADCs. We evaluated four hypotheses for the lack of translatability of PN with vcMMAE ADCs: 1) species differences in exposure; 2) insensitivity of animal models; 3) species differences in target biology and other vcMMAE ADC properties in peripheral nerves and 4) increased susceptibility of patient population. The result of this hypothesis-based approach identified opportunities to improve the predictivity of PN in our animal models by increasing duration of exposure and adding an expanded neurohistopathology assessment of peripheral nerves. The utility of a predictive animal model would be to provide possible mitigation strategies in the clinic with vcMMAE ADCs and help to screen the next generation microtubule inhibitor (MTI) ADCs for reduced PN.


Assuntos
Anticorpos/toxicidade , Antineoplásicos/toxicidade , Imunoconjugados/toxicidade , Oligopeptídeos/toxicidade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Testes de Toxicidade/métodos , Pesquisa Translacional Biomédica/métodos , Moduladores de Tubulina/toxicidade , Animais , Anticorpos/química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Relação Dose-Resposta a Droga , Composição de Medicamentos , Interações Medicamentosas , Humanos , Imunoconjugados/química , Imunoconjugados/farmacocinética , Modelos Animais , Oligopeptídeos/química , Oligopeptídeos/farmacocinética , Farmacogenética , Medição de Risco , Especificidade da Espécie , Fatores de Tempo , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...